Bayesian Parametric Bootstrap for Models with Intractable Likelihoods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian experimental design for models with intractable likelihoods.

In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utili...

متن کامل

Parameter Estimation for Hidden Markov Models with Intractable Likelihoods

Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the as...

متن کامل

On Russian Roulette Estimates for Bayesian inference with Doubly-Intractable Likelihoods

A large number of statistical models are ‘doubly-intractable’: the likelihood normalising term, which is a function of the model parameters, is intractable, as well as the marginal likelihood (model evidence). This means that standard inference techniques to sample from the posterior, such as Markov chain Monte Carlo (MCMC), cannot be used. Examples include, but are not confined to, massive Gau...

متن کامل

Bayesian inference and the parametric bootstrap.

The parametric bootstrap can be used for the efficient computation of Bayes posterior distributions. Importance sampling formulas take on an easy form relating to the deviance in exponential families, and are particularly simple starting from Jeffreys invariant prior. Because of the i.i.d. nature of bootstrap sampling, familiar formulas describe the computational accuracy of the Bayes estimates...

متن کامل

Playing Russian Roulette with Intractable Likelihoods

A general scheme to exploit Exact-Approximate MCMC methodology for intractable likelihoods is suggested. By representing the intractable likelihood as an infinite Maclaurin or Geometric series expansion, unbiased estimates of the likelihood can be obtained by finite time stochastic truncations of the series via Russian Roulette sampling. Whilst the estimates of the intractable likelihood are un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2019

ISSN: 1936-0975

DOI: 10.1214/17-ba1071